Transport Demand Elasticity of Bangkok and Nakhon Ratchasima

27 August 2009

Fuel prices (1998 – 2008)

Why elasticity is important?

- To understand the sensitivity of gasoline demand to changes in prices and income
 - Impacts of gasoline price change on various transport modes
 - Optimal taxation
 - Price-based policies to climate changes

Demand elasticity

- summarizes the responsiveness of demand to changes in the factors determining the level of demand.
- Describe the change in demand per one unit change in price
 - E.g., price Elasticity of Gasoline Consumption
 = -0.10
 - That is 100 percent increase in gasoline price, the gasoline consumption would reduce by 10 percent

The Demand Elasticity

- BTS Ridership
- BMTA Ridership

 \bullet LPG + NGV

•Diesel

The Demand Elasticity

General Function Form of demand model

 $ln Y_t = \alpha + \beta ln PG_t + \gamma ln Z_t + \delta ln Y_{t-1}$ Where

 Y_t = fuel demand or transport demand in period t. PG_t =average gasoline price in period t. Zt= Vector of other relevant explanatory variable Y_{t-1} =demand in time period t-1

with this formulation Short run elasticity = β Long run elasticity = $\beta/(1-\delta)$

Development of Demand Functions

- Multiple regression analysis
- Quarterly data for 10 years from 2541 2551 B.E.
 - (~ 40 data points)
- Avoidance of multi-collinearity
- Justification of the estimated coefficients

Independent variables

- Price of ULG95, NGV, LPG, Diesel
- No. of stations supplying NGV, LPG
- GDP, GPP, Population
- No. of registered vehicles, trucks, buses
- Bus fare, BTS Fare, MRTA fare, Expressway toll
- Seasonal factor

RESULT REGRESSION ANALYSIS OF ULG+GASOHOL CONSUMPTION IN THAILAND

	Model 1		Model 2		Model 3		Model 4		Model 5		
VARIABLE	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat	
Constant	25.207	.083	27.230**	4.908	12.599**	12.264	12.096**	22.642	10.310**	7.915	
PG95	162	-1.614	094	-2.123	058*	-2.127	014	777	134*	-2.272	
GDP	495*	-2.393							.206*	2.129	
POP	.464	.028									
Gt-1	156	420	149	577	.389**	7.478	.433**	8.762	.396**	7.837	
CAR	149*	-2.678	182**	-3.485	.044*	2.079					
SNGV	.009	.163									
SGAS	.022	.279	008	468							
SLPG	.097	.354									
Adjusted R ²	.678		.512		.645		.645		.674		
F-test	4.945		4.941		39.182		39.182		29.938		
Conclusion	Method :Enter		Method :Enter		Method :Enter		Method :Enter		Method :Enter		
	Correlated among:		Correlated	Correlated among:		Correlated among:		Predictor variable		Correlated among:	
	PG95 and GDP		PG95 and GDP		PG95 and CAR		Are Uncorrelated		PG95 and GDP		
	PG95 and POP		PG95 and CAR						Best Model		
	PG95 and CAR		PG95 and SGAS								
	PG95 and SNGV										
	PG95 and SGAS										
	PG95 and	SLPG									

* denotes significance at the 0.05 level

** denotes significance at the 0.01 level

ULG+GASOHOL CONSUMPTION - THAILAND

 $Ln(D_t) = 10.310 - 0.134(P_{ULG95,t}) + 0.206Ln(GDP_t) + 0.396Ln(D_{t-1})$

Adjusted $R^2 = 0.674$

Short-term elasticity = -0.13

Long-term elasticity = -0.22

RESULT REGRESSION ANALYSIS OF ULG+GASOHOL CONSUMPTION IN THAILAND

ULG+GASOHOL CONSUMPTION - Bangkok $Ln(D_t) = 14.133 - 0.292(P_{ULG95,t}) + 0.332Ln(GDP_t)$ $+ 0.050Ln(Vehreg_t) + 0.109Ln(D_{t-1})$

Adjusted R² = 0.870 ShtTrm El. = -0.29 LngTrm El. = -0.58

 ULG+GASOHOL
 CONSUMPTION – Korat
 Adjusted $\mathbb{R}^2 = 0.854$
 $Ln(D_t) = 14.133 - 0.064(P_{ULG95,t}) + 0.420Ln(GDP_t) + 0.538Ln(D_{t-1})$ ShtTrm El. = -0.06

 LngTrm El. = -0.14

LPG + NGV CONSUMPTION - THAILAND Adjusted $R^2 = 0.991$

ShtTrm El. = 0.36

 $Ln(D_t) = -0.011 + 0.359(P_{ULG95,t}) + 0.956Ln(D_{t-1})$

LngTrm El. = 8.16

 DIESEL CONSUMPTION - THAILAND
 Adjusted $\mathbb{R}^2 = 0.991$
 $Ln(D_t) = 3.244 - 0.141(P_{DSL,t}) + 0.081Ln(Trkreg_t) + 0.838Ln(D_{t-1})$ ShtTrm El. = -0.14

 LngTrm El. = -0.87

DIESEL CONSUMPTION - Bangkok Adjus

 $Ln(D_t) = -0.692 - 0.226(P_{DSL t}) + 0.539(GPP_t) + 0.461Ln(D_{t-1})$

Adjusted $R^2 = 0.871$

 $Ln(D_t) = 0.762 - 0.096(P_{DSL,t}) + 0.095Ln(Trkreg_t) + 0.914Ln(D_{t-1})$ ShtTrm El. = -0.10 LngTrm El. = -1.12

DIESEL CONSUMPTION - Korat

Adjusted $R^2 = 0.441$

ShtTrm El. = -0.23

LngTrm El. = -0.42

 TRAFFIC on EXPRESSWAY – Bangkok
 Adjusted $R^2 = 0.941$
 $Ln(D_t) = 6.369 - 0.043Ln(P_{ULG95,t}) + 0.350Ln(GPP_{GBA,t})$ ShtTrm El. = -0.04

 $+ 0.271Ln(Vehreg_{GBA,t}) + 0.199Ln(D_{t-1})$ LngTrm El. = -0.06

BMTA BUS RIDERSHIP – Bangkok

Adjusted $R^2 = 0.953$

 $Ln(D_t) = 26.451 + 0.080Ln(P_{ULG95,t}) - 0.928Ln(GPP_{GBA,t})$ ShtTrm El. = 0.08 $-0.019Ln(Vehreg_{GBA,t}) + 0.115(Season) + 0.267Ln(D_{t-1})$ LngTrm El. = 0.11

MRTA SUBWAY RIDERSHIP – BangkokAdjusted $\mathbb{R}^2 = 0.176$ $Ln(D_t) = -4.554 + 0.024Ln(P_{ULG95,t}) + 0.912Ln(POP_{GBA,t})$ ShtTrm El. = 0.02 $+0.220Ln(D_{t-1})$ LngTrm El. = 0.03

BTS SKYTRAIN RIDERSHIP – Bangkok

Adjusted $R^2 = 0.920$

 $Ln(D_t) = 1.364 + 0.048Ln(P_{ULG95,t}) + 1.219Ln(GPP_{GBA,t})$ $-0.134Ln(Fare_{BTS,t}) + 0.258Ln(Season)$

ShtTrm. El. = 0.05 LngTrm El. = N/A

Conclusion elasticity

TABLE SHORT RUN AND LONG RUN ELASICITY OF FUEL CONSUMPTION AND TRANSPORT DEMAND ELASTICITY IN THAILAND.

	SHOT RUN	LONG RUN
1.ULG & Gasohol Consumption elasticity	-0.13*	-0.22*
2.NGV&LPG Consumption elasticity	0.36	8.16
3.Diesel Consumption elasticity	-0.14**	-0.87**
4.Traffic on expressway elasticity	-0.04	-0.06
5.Bus ridership elasticity	0.08	0.11
6.MRTA ridership elasticity	0.02	0.03
7.BTS ridership elasticity	0.05	-

* denotes significance at the 0.05 level

* * denotes significance at the 0.01 level

Conclusion elasticity

TABLE SHORT RUN AND LONG RUN ELASICITY OF FUEL CONSUMPTION IN BANGKOK AND NAKHON RATCHASIMA.

	SHOT RUN	LONG RUN
BANGKOK		
1.ULG & Gasohol Consumption elasticity	-0.29**	-0.58
2.Diesel Consumption elasticity	-0.09	-1.12
NAKHON RATCHASIMA		
1.ULG & Gasohol Consumption elasticity	-0.06	-0.14
2.Diesel Consumption elasticity	-0.23	-0.42

* denotes significance at the 0.05 level

* * denotes significance at the 0.01 level

Compare with other country

Demand Elasticity of Fuel consumption with respect to fuel price per liter.

Country	Short Run	Long Run
Thailand(2009)	-0.13	-0.22
Goodwin <i>et al.</i> (2004)	-0.25	-0.64
M. Nagy Eltony ,Gulf Cooperation Council(1996)	-0.11	-0.17
Goodwin(1992)	-0.27	-0.73

Demand Elasticity of traffic on expressway with respect to fuel price per liter.

Country	Short Run	Long Run
Thailand(2009)	-0.04	-0.06
James Odeck,Norway(2008)	-0.56	-0.82
Anna Metas <i>et al</i> .,Spain(2002)	-0.30	-0.53
Ira Hirschman <i>et al</i> .,New York(1995)	-0.09	-0.5

Compare with other country

Demand Elasticity of bus ridership with respect to fuel price per liter.

Country	Short Run	Long Run
Thailand(2009)	0.08	0.11
Luk Hepburn ,Australia(1993)	0.07	-
Storchmann,Germany(2001)	0.07	-
Jeremy Mattson , U.S. (2008)	0.12	-

19

Joint Graduate School of Energy and Environment

Chumnong Sorapipatana

Suranaree University of Technology Thirayoot Limanond (Ph.D.) Thailand Development Research Institute Foundation Sumet Ongkittikul (Ph.D.)

Sajjakaj Jomnonkwoa

Duangdao Watthanaklang

